

KHENTAWAS, FARRUKHNAGAR, GURGAON, HR

Department:ECE

Academic Session: 2017-18 (Jan-June 2018)

Lesson Plan for the Semester started w.e.f 08.01.2018

Subject with code:VLSI DESIGN(EE-306-F)

Name of Faculty with designation :Krishanu Kundu,Asst.Prof

Month	Date & Day	Sem-Class	Unit	Topic/Chapter covered	Academic activity	Test / assignment
January	10.01.2018 Wednesday	VI-ECE/EEE		Introduction to MOSFETs -Description of MOSFETs -Operation of Enhancement mode & Depletion mode MOSFET -Description & structure of n-MOS & p-MOS -Description & structure of CMOS		Assignment of 02 Ques. given
January	11.01.2018 Thursday	VI-ECE/EEE	4	Equivalent circuit of n-MOS ,p-MOS &CMOS -Threshold voltages for n-MOS and p-MOS Drain current characteristics of E-type & D-type n-MOSFET -Identification of regions of operation of the MOSFETs -Conductance characteristics of E-type & D-type n-MOSFET		Assignment of 02 Ques. given
January	17.01.2018 Wednesday	VI-ECE/EEE		structure of Enhancement mode n-MOSFET -Polarities of voltages applied to Gate, Drain, Source & Substrate. Formation of channel in enhancement mode MOSFET Derivation of mathematical expression for Drain current IDS for n-MOS and p-MOS		Assignment of 02 Ques. given
January	18.01.2018 Thursday	VI-ECE/EEE	1	Diagram of structure of n-MOS & p-MOS & voltage polarities. Definition of Threshold voltage & substrate bias.Work function difference between gate and Si Fermi level potential between inverted surface and bulk Si Expression for Threshold voltage Meaning & Expression of Body effect		Assignment of 02 Ques. given
January	24.01.2018 Wednesday	VI-ECE/EEE	1	Subthrehold region -Channel length Modulation -Mobility variation -Fowler-Nordheim Tunnelling -Drain Punchthrough -Impact ionization-Hot electrons		Assignment of 02 Ques. given

Month	Date & Day	Sem-Class	Unit	Topic/Chapter covered	Academic activity	Test / assignment
January	25.01.2018 Thursday	VI-ECE/EEE	1	MOS device transconductance - figure of merit - Small signal equivalent model AC characteristics - Output conductance - Channel resistance		Assignment of 02 Ques. given
January	23.01.2018 Tuesday	VI-ECE/EEE	1	Different configurations of MOS switches and MOS loads -Output characteristics for different ratios of (W/L)driver/ (W/L)		Assignment of 02 Ques. given
January	1.02.2018 Thursday	VI-ECE/EEE	1	Principle & Working of Latch –up circuit Latch-up circuit Model V-I characteristics of TTL BICMOS inverter Circuit		Test
January	7.02.2018 Wednesday	VI-ECE/EEE	2	Derivation of n-MOS inverter transfer characteristic & threshold voltage of inverterEffect of variation of (Z pu / Zpd) on the transfer characteristic		Assignment of 02 Ques. given
January	8.02.2018 Thursday	VI-ECE/EEE	2	Basic principle of CMOS Working of CMOS DC characteristics of CMOS βn / βp ratio Noise Margin CMOS Inverter as an Amplifier		Assignment of 02 Ques. given
February	21.02.2018 Wednesday	VI-ECE/EEE	2	Basic configuration of MOS switch with load resistance RL -Configuration of MOS switch and n-MOS depletion mode transistor pull up -Configuration of MOS switch and n-MOS enhancement mode transistor pull up		Assignment of 02 Ques. given
February	22.02.2018 Thursday	VI-ECE/EEE	2	MOS AS PASS TRANSISTOR & DETERMINATION OF PULL UP/PULL DOWN RATIO FOR n-MOS INVERTER DRIVEN BY ANIOTHER n-MOS INVERTER /PASS TRANSISTOR		Assignment of 02 Ques. given
February	28.02.2018 Wednesday	VI-ECE/EEE	2	A generic static load inverter -The Pseudo –n MOS inverters -Saturated load inverters using n MOS transistor load -The Cascode inverter -TTL interface inverter		Assignment of 02 Ques. given

Month	Date & Day	Sem-Class	Unit	Topic/Chapter covered	Academic activity	Test / assignment
March	7.03.2018 Wednesday	VI-ECE/EEE	2	A simple inverter (basic gates) transistor model -The rule for designing STICK DIAGRAM for pMOS and nMOS transistors -Substitution of stick bar in place of transistors		Assignment of 02 Ques. given
March	8.03.2018 Thursday	VI-ECE/EEE	2	Discussion on Lambda based rules -The distance gap within different construction material used for transistor modelDesign Rule Check -Channel length parameter -Latest technology trends		Assignment of 02 Ques. given
March	14.03.2018 Wednesday	VI-ECE/EEE	2	Super Buffers classification,BiCMOS Features - Gates design BiCMOS -Steering Logic through multiplexer -Few examples implementation by Steering logic		Test
March	15.03.2018 Thursday	VI-ECE/EEE	3	Combinational circuit Boolean expression minimization - Expression realization with the pMOS - Expression realization with the nMOS - Realization of digital circuits using cMOS Tristate Inverter		Assignment of 02 Ques. given
March	28.03.2018 Wednesday	VI-ECE/EEE	3	V-I CMOS Logic StructuresClocking Strategies Estimation of R, Resistance of Nonrectangular Regions Contact and Via Resistance Refresh loop ,Parallel load mode, Shift right mode Shift left mode,Parallel out put,Isolation of inverters		Assignment of 02 Ques. given
March	4.04.2018 Wednesday	VI-ECE/EEE	3	Analytic Delay Models of -Rise Time, tr, -Fall Time, tf, -Delay Time, td Empirical Delay Models		Test
April	5.04.2018 Thursday	VI-ECE/EEE	4	Introduction to CAD tools,Use of CAD tools Introduction to VHDL:Structural Modeling Data Flow Modeling ,Behavioral Modeling OBJECTS,CLASSES,DATA TYPES, OPERATORS		Assignment of 02 Ques. given
April	11.04.2018 Wednesday	VI-ECE/EEE	4	Libraries and Packages ,Overloading Programmable Logic Devices. • Programmable Array Logic • Programmable Logic Array • FPGA • ROM		Assignment of 02 Ques. given

Month	Date & Day	Sem-Class	Unit	Topic/Chapter covered	Academic activity	Test / assignment
April	12.04.2018 Thursday	VI-ECE/EEE	4	ROM(Read Only Memory) as PLD PLA(Programmable Logic Array) and PAL(Programmable Array Logic) FPGA(Field Programmable Gate Array) CPLD's(Complex Programmable Logic Devices)		Test